![]() |
February 2020 | ![]() |
||||
Sun | Mon | Tue | Wed | Thu | Fri | Sat |
---|---|---|---|---|---|---|
01 |
||||||
02 |
03 |
04 |
05 |
06 |
07 |
08 |
09 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
View month events |
Komlavi Senyo ELOH doctorant au sein de l'équipe "Physique, Mécanique et Plasticité" de l'Institut Jean Lamour, soutient sa thèse intitulée :
"FFT-based modelling of X-Ray Diffraction peaks: application to dislocation loop"
Date et lieu :
Vendredi 28 février 2020 à 14h00
Campus Artem
Amphithéâtre 200
Composition du jury :
Rapporteurs :
- Olivier THOMAS
Professeur, Université Aix-MarseilleProfesseur,
- Djimédo KONDOProfesseur,
Université Pierre et Marie Curie
Examinateurs :
- Marie-Ingrid RICHARD
Ingénieur de recherche HDR, CEA et ERSF
- Istvàn GROMA
Professeur, Eötvös Loránd University, Budapest, Hongrie
- Lionel GELEBART
Ingénieur de recherche HDR, CEA Saclay
Directeur de thèse :
- Alain JACQUES
Directeur de Recherche CNRS, Institut Jean Lamour, Université de Lorraine
Co-Directeur de thèse :
- Stéphane BERBENNI
Directeur de Recherche CNRS, Université de Lorraine
Invité :
- Laurent CAPOLUNGO
Directeur de Recherche, Los Alamos National Laboratory, USA
Abstract :
In this work, we propose and test an original numerical method of simulation of X-ray diffraction peaks by single crystals. This method is based on the use of Fast Fourier Transform (FFT) algorithms for the calculation of mechanical fields resulting from external loading and / or linear defects such as dislocation loops. These defects are modeled by stress-free strain fields (eigenstrains) in a periodic microstructuresubjected to thermomechanicalloadings. In the first part, we present an improved approach by FFT-type algorithms which allows to accurately obtain the local mechanical fields without numerical oscillation at material's discontinuities.This improvement is due to the use of a discrete and periodic Green operator. This is obtained by solving the Lippmann-Schwinger equation in the Fourier space and using an appropriate spatial discretization. The fourth order modified Green operator allowsto calculate the values of the strain and stress fields at all voxels. We also propose a third order periodic green operator to compute the displacement field. The computed displacement field is then corrected by a sub-voxelizationmethod which removes the artifacts appearing in the case of dislocation loops inclined with respect to the reference grid. Numerical examples on reference cases show the effect of the Green operators for the calculation of local mechanical fields without oscillation and the efficiency of the sub-voxelizationmethod. The final displacement field obtained is the input data of the simulation of X-ray diffraction patterns.The method of simulation of X-ray diffraction peaks of FCC (Face-Centered Cubic) single crystals is then presented. The diffracting material is modelledby a representative volume containing dislocation loops in (111) slip planes. We calculate the amplitude then the intensity of the diffracted beam near a node of the reciprocal lattice. This 3Ddistribution of the diffracted intensity is processed to obtain 1Ddiagrams that will be analyzed.The simulations demonstrate foremost the elimination of the artifacts on the diffraction diagrams which are due to the oscillations of the uncorrected mechanical fields. The diffraction peaks are analyzed by different statistical methods (Fourier transform of intensity, method of moments, etc.) which allow to evaluate the distribution parameters of dislocations (density, polarization factor, etc.) and to compare them with their theoretical values.