linkedintwitter
Annuaire  |  Flux RSS  |  Espace presse  |  Wiki IJL  |  Webmail  |  Videos  |    Photos   Articles scientifiques  Articles scientifiques 

Publications: Articles

Annees:  
Toutes :: 2002, ... , 2012, 2013, 2014, 2015
Auteurs:  
Tous :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
Tous :: H. A. Wilhelm, ... , Hémel, Hennequin, Henrion, ... , Hytkova 
Preferences: 
References par page: Mots clefs Voir les resumes
References

Articles:

Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Nevius, M. S., Wang, F., Shepperd, K., Palmer, J., Bertran, F., Le Fèvre, P., Kunc, J., de Heer, W. A., Berger, C. and Conrad, E. H.
NATURE PHYSICS, 9(1):49-54
2013
ISSN: 1745-2473

Equipe: Département P2M : Surfaces et Spectroscopies

Dap, S., Hugon, R., Lacroix, D., de Poucques, L., Briançon, J.-L. and Bougdira., J.
Physics of Plasmas, 20:033703
2013

Resume: In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis. (C) 2013 American Institute of Physics.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Bieber, T., Glad, X., De Poucques, L, Hugon, R., Vasseur, J.-L. and Bougdira., J.
The Open Plasma Physics Journal, 6:32-43
2013

Resume: This paper deals with pure argon plasma studied in a magnetically enhanced inductively coupled reactor. Laser induced fluorescence technique was performed with an optical parametric oscillator laser on the 3d4F7/2 and 3d2G9/2 Ar+ metastable levels and on the (2P03/2)4s2 neutral metastable state to determine their relative densities. Langmuir probe was used as a complementary diagnostic to measure the electron energy distribution functions. When increasing the confinement magnetic field, the metastable state density collapses for all cited levels, by contrast with ne which is continuously growing. Calculations were carried out for neutral argon to explain this behaviour. The results show that the metastable population is depleted by electron-impact excitation and ionization, these loss processes becoming dominant compared to the metastable state creation term.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Rougemaille, N., Montaigne, F., Canals, B., Hehn, M., Riahi, H., Lacour, D. and Toussaint, J.-C.
New Journal of Physics, 15
2013

Equipe: Département P2M : Nanomagnétisme et Electronique de Spin

Devolder, T., Tahmasebi, T., Eimer, S., Hauet, T. and Andrieu, S.
Applied Physics Letters, 103(24)
2013

Equipe: Département P2M : Nanomagnétisme et Electronique de Spin

Hamdan, A., Noel, C., Kosior, F., Henrion, G. and Belmonte., T.
Journal of the Acoustical Society fo America, 134:991
2013

Resume: The determination of the initial pressure at the bubble wall created by a discharge in heptane for micro-gap conditions cannot be determined straightforwardly by modeling the time-oscillations of the bubble. The resolution of the Gilmore equation gives the same solutions beyond 1 mu s typically for various sets of initial parameters, making impossible the determination of the initial pressure at the bubble wall. Furthermore, the very first instant of the bubble formation is not easily accessible at very short time scales because of the plasma emission. Since the pressure waves propagate in the liquid, it is much easier to gain information on the first instants of the bubble formation by studying the pressure field far from the emission source. Then, it is possible to deduce by modeling what happened at the beginning of the emission of the pressure waves. The proposed solution consists in looking at the oscillations affecting another bubble located at least twice farther from the interelectrode gap than the maximum radius reached by the discharge bubble. The initial plasma pressure can be determined by this method. (C) 2013 Acoustical Society of America.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Hamdan, A., Noel, C., Kosior, F., Henrion, G. and Belmonte, T.
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 134(2, 1):991-1000 Belmonte, T (Reprint Author), Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, Parc Saurupt,CS 14234, F-54042 Nancy, France. Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T., Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, F-54042 Nancy, France.
2013
ISSN: 0001-4966

Resume: The determination of the initial pressure at the bubble wall created by a discharge in heptane for micro-gap conditions cannot be determined straightforwardly by modeling the time-oscillations of the bubble. The resolution of the Gilmore equation gives the same solutions beyond 1 mu s typically for various sets of initial parameters, making impossible the determination of the initial pressure at the bubble wall. Furthermore, the very first instant of the bubble formation is not easily accessible at very short time scales because of the plasma emission. Since the pressure waves propagate in the liquid, it is much easier to gain information on the first instants of the bubble formation by studying the pressure field far from the emission source. Then, it is possible to deduce by modeling what happened at the beginning of the emission of the pressure waves. The proposed solution consists in looking at the oscillations affecting another bubble located at least twice farther from the interelectrode gap than the maximum radius reached by the discharge bubble. The initial plasma pressure can be determined by this method. (C) 2013 Acoustical Society of America.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

Zhang, H.Y., Cleymand, F., Noel, C., Kahn, C.J.F., Linder, M., Dahoun, A., Henrion, G. and Arab-Tehrany, E.
Carbohydrate Polymers, 93(2):401-411
2013

Resume: This work addresses the functionalization of chitosan thin films and its nanoliposomes blend films by a microwave-excited Ar/N2/H2 surface-wave plasma treatment which was found an effective tool to modify surface properties. Changes in the film properties (wettability, chemical composition, morphology) induced by the plasma treatment are studied using water contact angle measurements, X-ray photoelectron spectroscopy and scanning probe microscopy. The results suggest that hydrophilicity of the films is improved by plasma treatment in a plasma condition dependency manner. Water contact angle of chitosan films before and after plasma treatment are, respectively, 101° and 27°. Besides chemical changes on the surface, the nanoliposomes incorporation and plasma treatment also induce morphological modifications. Moreover, a correlation is found between the nanoliposomes composition and size, and the effects of plasma treatment. It is shown that the plasma treatment significantly improves the chitosan film functionalization. The effect of N2 content (88% and 100%) in the plasma gas mixture on the film etching is also pointed out.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Chichti, E., Henrion, G., Cleymand, F., Jamshidian., M., Linder, M. and Arab Tehrany, E.
Plasma Processes and Polymers, 10:535-543
2013

Resume: Poly-lactic acid (PLA) is the most used biopolymer in both biomedical and food packaging fields to replace petrochemical plastics. The surface properties of PLA thin films were studied before and after plasma treatment to enhance its wettability and its adhesive properties. Based on the experimental design, the most significant parameters of the plasma process were specified. The effect of the cold plasma treatment on the mechanical, topographic composition, thermal and barrier properties of the PLA was carried out using different Ar-N2-O2 gas mixture. Results show that the discharge gas can have a significant influence on the chemical composition and the wettability of the PLA surfaces. As the plasma processing is a surface treatment without affecting the bulk properties, it did not change the PLA properties.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Martin, J., Melhem, A., Shchedrina, I., Duchanoy, T., Nominé, A., Henrion, G., Czerwiec, T. and Belmonte, T.
Surface and Coatings Technology, 221:70
2013

Resume: The plasma electrolytic oxidation (PEO) of aluminium alloys is investigated for different electrical working conditions using a pulsed bipolar current supply. A particular attention is paid to the effect of the anodic current density (from 10 to 90 A dm-2) and current pulse frequency (from 100 to 900 Hz) on the resulting oxide layer. Micro-discharges are characterized during the process by means of fast video imaging with a time and a space resolution of 8 μs and 0.017 mm2, respectively. Correlations are established between themicro-discharge characteristics (surface density, lifetime and size) and the elaborated oxide layers (morphology, growth rate and surface roughness). The highest coating growth rate measured (2.1 μm min-1) is achieved with the combination of the highest current density (75.7 A dm-2) and the highest current pulse frequency (900 Hz). Within these specific current conditions it is concluded that the detrimental effects of numerous micro-discharges are minimized. The results also show that the surface roughness may be largely affected by the presence of long-lived and large micro-discharges which develop over the processed surface. The strongest micro-discharges (live duration up to 0.3 ms and cross-sectional area up to 1 mm2) are mainly observed with the combination of the highest current density (75.7 A dm-2) and the lowest current pulse frequency (100 Hz).

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Page:  
Precedente | 1, 2, 3, 4, 5 | Suivante
Cette annee / Total:
47 / 374
Exporter au format:
BibTeX, XML