linkedintwitter
Annuaire  |  Flux RSS  |  Espace presse  |  Wiki IJL  |  Webmail  |  Videos  |    Photos   Articles scientifiques  Articles scientifiques 

Publications: Articles

Annees:  
Toutes :: 2002, ... , 2007, 2008, 2009, ... , 2014
Auteurs:  
Tous :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
Tous :: Nabais, ... , Nesládek, Neu, Nevius, ... , Nührenberg 
Preferences: 
References par page: Mots clefs Voir les resumes
References

2014

Articles:

Hamdan, A., Noel, C. and Belmonte, T.
Materials Letters, 135:115-118
2014

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Neggache, A., Hauet, T., Bertran, F., Le Fèvre, P., Petit-Watelot, S., Devolder, T., Ohresser, P., Boulet, P., Mewes, C., Maat, S., Childress, J. R. and Andrieu, S.
APPLIED PHYSICS LETTERS, 104
2014
ISSN: 0003-6951

Equipe: Centre de Compétences : X-Gamma rayons X et spectroscopie

Nominé, A., Martin, J., Noel, C., V. Bardin, I., L. Kovalev, V., Belmonte, T., G. Rakoch, A. and Henrion, G.
Applied Physics Letters, 104:081603
2014

Resume: Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic microdischarges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 1015cm_3) and the electron temperature (typ. 7500K) while the role of F_ anions on the appearance of cathodic micro-discharges is pointed out.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

2013

Articles:

Yang, Z., Krieger, K., Lunt, T., Brochard, F., Briançon, J-L., Neu, R., Dux, R., Janzer, A., Potzel, S., Pütterich, T. and Asdex Upgrade Team, The
Journal of Nuclear Materials, 438:S846-S851
2013

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Gazeli, K., Noel, C., Clement, F., Daugé, C., Svarnas, P. and Belmonte, T.
Plasma Sources Science and Technology, 22:025020
2013

Resume: The origin of differences in the rotational temperatures of various molecules and ions (N-2(+)(B), OH(A) and N-2(C)) is studied in helium atmospheric-pressure guided streamers. The rotational temperature of N-2(+)(B) is room temperature. It is estimated from the emission band of the first negative system at 391.4 nm, and it is governed by the temperature of N-2(X) in the surrounding air. N-2(X) is ionized by direct electron impact in the outer part of the plasma. N-2(+)(B) is deactivated by collisions with N-2 and O-2. The rotational temperature of OH(A), estimated from the OH band at 306.4 nm, is slightly higher than that of N-2(+)(B). OH(A) is excited by electron impact with H2O during the first 100 ns of the applied voltage pulse. Next, OH(A) is produced by electron impact with OH(X) created by the quenching of OH(A) by N-2 and O-2. H2O diffuses deeper than N-2 into the plasma ring and the rotational temperature of OH(A) is slightly higher than that of N-2(+)(B). The rotational temperature of N-2(C), estimated from the emission of the second positive system at 315.9 nm, is governed by its collisions with helium. The gas temperature of helium at the beginning of the pulse is predicted to be several hundred kelvin higher than room temperature.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Nevius, M. S., Wang, F., Shepperd, K., Palmer, J., Bertran, F., Le Fèvre, P., Kunc, J., de Heer, W. A., Berger, C. and Conrad, E. H.
NATURE PHYSICS, 9(1):49-54
2013
ISSN: 1745-2473

Equipe: Département P2M : Surfaces et Spectroscopies

Hamdan, A., Noel, C., Kosior, F., Henrion, G. and Belmonte., T.
Journal of the Acoustical Society fo America, 134:991
2013

Resume: The determination of the initial pressure at the bubble wall created by a discharge in heptane for micro-gap conditions cannot be determined straightforwardly by modeling the time-oscillations of the bubble. The resolution of the Gilmore equation gives the same solutions beyond 1 mu s typically for various sets of initial parameters, making impossible the determination of the initial pressure at the bubble wall. Furthermore, the very first instant of the bubble formation is not easily accessible at very short time scales because of the plasma emission. Since the pressure waves propagate in the liquid, it is much easier to gain information on the first instants of the bubble formation by studying the pressure field far from the emission source. Then, it is possible to deduce by modeling what happened at the beginning of the emission of the pressure waves. The proposed solution consists in looking at the oscillations affecting another bubble located at least twice farther from the interelectrode gap than the maximum radius reached by the discharge bubble. The initial plasma pressure can be determined by this method. (C) 2013 Acoustical Society of America.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Hamdan, A., Noel, C., Kosior, F., Henrion, G. and Belmonte, T.
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 134(2, 1):991-1000 Belmonte, T (Reprint Author), Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, Parc Saurupt,CS 14234, F-54042 Nancy, France. Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T., Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, F-54042 Nancy, France.
2013
ISSN: 0001-4966

Resume: The determination of the initial pressure at the bubble wall created by a discharge in heptane for micro-gap conditions cannot be determined straightforwardly by modeling the time-oscillations of the bubble. The resolution of the Gilmore equation gives the same solutions beyond 1 mu s typically for various sets of initial parameters, making impossible the determination of the initial pressure at the bubble wall. Furthermore, the very first instant of the bubble formation is not easily accessible at very short time scales because of the plasma emission. Since the pressure waves propagate in the liquid, it is much easier to gain information on the first instants of the bubble formation by studying the pressure field far from the emission source. Then, it is possible to deduce by modeling what happened at the beginning of the emission of the pressure waves. The proposed solution consists in looking at the oscillations affecting another bubble located at least twice farther from the interelectrode gap than the maximum radius reached by the discharge bubble. The initial plasma pressure can be determined by this method. (C) 2013 Acoustical Society of America.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

G. Rakoch, A., Nominé, A., A. Gladkova, A., L. Kovaleva, V. and V. Bardin, I.
Russian Journal of Non Ferrous Metals, 54(1):8-12
2013

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Zhang, H.Y., Cleymand, F., Noel, C., Kahn, C.J.F., Linder, M., Dahoun, A., Henrion, G. and Arab-Tehrany, E.
Carbohydrate Polymers, 93(2):401-411
2013

Resume: This work addresses the functionalization of chitosan thin films and its nanoliposomes blend films by a microwave-excited Ar/N2/H2 surface-wave plasma treatment which was found an effective tool to modify surface properties. Changes in the film properties (wettability, chemical composition, morphology) induced by the plasma treatment are studied using water contact angle measurements, X-ray photoelectron spectroscopy and scanning probe microscopy. The results suggest that hydrophilicity of the films is improved by plasma treatment in a plasma condition dependency manner. Water contact angle of chitosan films before and after plasma treatment are, respectively, 101° and 27°. Besides chemical changes on the surface, the nanoliposomes incorporation and plasma treatment also induce morphological modifications. Moreover, a correlation is found between the nanoliposomes composition and size, and the effects of plasma treatment. It is shown that the plasma treatment significantly improves the chitosan film functionalization. The effect of N2 content (88% and 100%) in the plasma gas mixture on the film etching is also pointed out.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Page:  
Precedente | 1, 2, 3, 4, 5, 6, ... , 10 | Suivante
Total:
100
Exporter au format:
BibTeX, XML