linkedintwitter
Annuaire  |  Flux RSS  |  Espace presse  |  Wiki IJL  |  Webmail  |  Videos  |    Photos   Articles scientifiques  Articles scientifiques 

Publications: Articles

Annees:  
Toutes :: 2011, 2013, 2014
Auteurs:  
Tous :: A, B, C, D, F, G, H, J, K, L, M, N, S, T 
Preferences: 
References par page: Mots clefs Voir les resumes
References

2014

Articles:

Audinot, J. -N., Hamdan, A., Grysan, P., Fleming, Y., Noel, C., Kosior, F., Henrion, G. and Belmonte, T.
SURFACE AND INTERFACE ANALYSIS, 46(1, SI):397-400 Audinot, JN (Reprint Author), Ctr Rech Publ Gabriel Lippmann, SAM Dept, 41 Rue Brill, L-4422 Belvaux, Luxembourg. Audinot, J. -N.; Grysan, P.; Fleming, Y., Ctr Rech Publ Gabriel Lippmann, SAM Dept, L-4422 Belvaux, Luxembourg. Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T., Univ Lorraine, Inst Jean Lamour, CNRS, UMR 7198,CS 50840, F-54011 Nancy, France.
2014
ISSN: 0142-2421

Mots clefs: imaging; combinaison; characterization; plasma; nanosims; 3D

Resume: The discharge between a platinum electrode and different metallic monolayers on a silicon substrate produced sub-micrometric structures. The scanning electron microscope images showed the formation of craters with cones, holes, corona, and other exotic structures. The atomic force microscopy images allowed evaluating the depth and height of these complex structures together with the chemical information as determined by NanoSIMS imaging. The plasma impacts locally removed the mono-layer and the bilayer down to the bare silicon substrate. In order to convert the acquired NanoSIMS images into a true three-dimensional distribution of the analyzed species, the SIMS images are overlapped with the corresponding atomic force microscopy images of the same probed area. This analysis method allows a visualization of a complex 3D structure and helps understand the formation mechanisms of the streamer impact. Copyright (c) 2014 John Wiley & Sons, Ltd.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

Saa, D. Kuete, Cardoso, R. P., Kosior, F., Al Taweel, A., Gries, T., Laminsi, S. and Belmonte, T.
SURFACE & COATINGS TECHNOLOGY, 255:3-7 Belmonte, T (Reprint Author), Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, F-54042 Nancy, France. Saa, D. Kuete; Kosior, F.; Al Taweel, A.; Gries, T.; Belmonte, T., Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, F-54042 Nancy, France. Saa, D. Kuete; Laminsi, S., Univ Yaounde I, Lab Chim Minerale, Yaounde 812, Cameroon. Cardoso, R. P., Univ Fed Parana, BR-81531990 Curitiba, Parana, Brazil. Gries, T.; Belmonte, T., CNRS, Inst Jean Lamour, UMR CNRS 7198, F-54042 Nancy, France.
2014
ISSN: 0257-8972

Mots clefs: RuO2; Nanostructuration; Localized growth; Micro-plasma; Afterglow

Resume: Various ruthenium dioxide nanostructures were grown locally by the oxidation of ruthenium samples with an Ar-O-2 microwave micro-afterglow operated at atmospheric pressure. A special attention was paid to the distribution of the surface temperature of the sample which evolves between 530 K and 820 K. Whatever the treatment time, the temperature and the gas composition set within the studied ranges, a general nanostructure, made of lamellae separated by 20-50 nm, is found. When the temperature rises, localized nano-sea urchins, nanotubes with square sections, nano-needles, and more complex structures are found spread over the surface. Treated surfaces were characterized by different surface diagnostics (SEM, XRD, SIMS, etc.) Finally, a growth mechanism is proposed emphasizing the role of emerging defects and stress on the appearance of localized nanostructures. (C) 2013 Elsevier B.V. All rights reserved.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

2013

Articles:

Hamdan, Ahmad, Audinot, Jean-Nicolas, Migot-Choux, Sylvie, Noel, Cedric, Kosior, Francis, Henrion, Gerard and Belmonte, Thierry
ADVANCED ENGINEERING MATERIALS, 15(10):885-892 Hamdan, A (Reprint Author), Univ Lorraine, Inst Jean Lamour, CNRS, UMR 7198, F-54042 Nancy, France. Hamdan, Ahmad; Migot-Choux, Sylvie; Noel, Cedric; Kosior, Francis; Henrion, Gerard; Belmonte, Thierry, Univ Lorraine, Inst Jean Lamour, CNRS, UMR 7198, F-54042 Nancy, France. Audinot, Jean-Nicolas, Ctr Rech Publ Gabriel Lippmann, SAM Dept, L-4422 Belvaux, Luxembourg.
2013
ISSN: 1438-1656

Resume: Discharges in heptane in pin-to-plate configuration are produced between a platinum wire and a (100)-oriented silicon wafer coated by a carbon nanotube (CNT) carpet. This carpet is used to simulate the behavior of a nanostructured surface in electro-discharge machining (EDM) where small protrusions on the surface could play a similar role. CNTs behave like simple electrical conductors between the discharge and the silicon wafer. They act as if they would focus the current on smaller areas. The average diameter of impacts is about five times smaller if the silicon wafer is coated by a CNT carpet. The underlying silicon surface is heated by the plasma and melts, forming a central spot surrounded by a serrated trailing edge. The current density being about one order of magnitude larger when a CNT carpet is present, the induced magnetic field stirs the molten silicon, creating serrations all around the impact. Hot nanoparticles of carbon coming from the plasma fall and roll randomly on the silicon surface where they create wavy micro-channels. Nanowires that are detached from the surface are covered by nanoparticles of platinum in the plasma and embedded within an amorphous carbon layer deposited on the nanotube. However, these effects can only be observed if the current density is high enough (>approximate to 10A mu m(-2) depending on the material) like in micro-EDM but not in nano-EDM.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

Hamdan, A., Audinot, J. -N., Noel, C., Kosior, F., Henrion, G. and Belmonte, T.
APPLIED SURFACE SCIENCE, 274:378-391 Belmonte, T (Reprint Author), Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, F-54011 Nancy, France. Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T., Univ Lorraine, Inst Jean Lamour, UMR CNRS 7198, F-54011 Nancy, France. Audinot, J. -N., Ctr Rech Publ Gabriel Lippmann, SAM Dept, L-4422 Belvaux, Luxembourg. Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T., CNRS, Inst Jean Lamour, UMR CNRS 7198, F-54011 Nancy, France.
2013
ISSN: 0169-4332

Mots clefs: Microplasma; Plasma in liquids; Plasma-surface interaction; Thin films

Resume: Interaction of discharges in heptane with magnetron-sputtered thin films made of aluminum, copper or iron is studied in a pin-to-plate configuration. The behavior of discharges on thin films can be used to better understand the interaction of discharges with given surfaces and it might also improve the reproducibility of the impacts in order to better control their shape. Single layers and bilayers of metals are characterized after impact by SEM, AFM, micro-EDX and nano-SIMS analyses. Discharges last typically for a few hundreds of nanoseconds and dissipated energies range between 1 and 100 mJ. We show that at low impact energy, copper and aluminum are heated and stretched by surface stress. At intermediate energy, melting occurs, leading to the synthesis of external beads by Marangoni's convection. At high energy, the shape of the impact is defined by the pressure release when the discharge stops. When iron is deposited onto silicon, dewetting is an important mechanism. The columnar structure of the deposit may have two distinct roles. On the one hand, gases trapped in intercolumnar boundaries can produce tiny holes. On the other hand, the shock wave can abrade the outermost and less cohesive part of the film if it is made of columns separated by large porosities. (C) 2013 Elsevier B.V. All rights reserved.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

Hamdan, A., Kosior, F., Noel, C., Henrion, G., Audinot, J-N, Gries, T. and Belmonte, T.
JOURNAL OF APPLIED PHYSICS, 113(21) Belmonte, T (Reprint Author), Univ Lorraine, CNRS, Dept CP2S, Inst Jean Lamour, Parc Saurupt,CS 50840, F-54011 Nancy, France. Hamdan, A.; Kosior, F.; Noel, C.; Henrion, G.; Gries, T.; Belmonte, T., Univ Lorraine, CNRS, Dept CP2S, Inst Jean Lamour, F-54011 Nancy, France. Audinot, J-N, Ctr Rech Publ Gabriel Lippmann, SAM Dept, L-4422 Belvaux, Luxembourg.
2013

Resume: The main processes related to discharges between pin and plate electrodes in hydrocarbon liquid (heptane) are modelled for micro-gap (from 10 to 100 mu m) conditions. When a plasma channel hits the surface, a micro-crater is created. The different phenomena controlling the geometry (shape and dimension) of a single crater are described and included in a theoretical model developed for the specific case of pure aluminium. The influence of the most important parameters affecting the geometry of the crater is discussed. Among them, one finds the pressure exerted by the plasma on the liquid metal. It is found that the distribution of the pressure applied on the liquid pool changes significantly the way the plasma shapes the pool. It is assumed that at high charges, the pressure profile is tilted from the channel axis, leading to the formation of a central protrusion. On the other hand, we demonstrate that Thomson-Marangoni forces play an important role for crater diameters smaller than 5 mu m. Then, the choice of the first derivative of the surface tension with respect to the temperature is a key factor. This effect is strongly related to the way convection displaces matter in the liquid pool. Finally, the quenching step is sufficiently fast to freeze the liquid shape as soon as the plasma vanishes. (C) 2013 AIP Publishing LLC.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

2011

Articles:

Belmonte, T., Gries, T., Cardoso, R. P., Arnoult, G., Kosior, F. and Henrion, G.
PLASMA SOURCES SCIENCE & TECHNOLOGY, 20(2)
2011
ISSN: 0963-0252

Resume: This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of mu m h(-1)) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO(2) nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O(2) micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (similar to 500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (similar to 1 mu m), and for relatively high content in HMDSO, SiO(2) walls forming hexagonal cells are obtained.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

Arnoult, G., Belmonte, T., Kosior, F., Dossot, M. and Henrion, G.
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 44(17)
2011

Resume: The origin of organization of nanostructured silica coatings deposited on stainless steel substrates by remote microplasma at atmospheric pressure is investigated. We show by resorting to thermal camera measurements coupled with modelling that deposition, limited to a few seconds in time, occurs at low temperature (similar to below 420 K) although the gas temperature may reach 1400 K. Raman analyses of deposited films with thicknesses below 1 mu m show the presence of oxidized silicon bonded to the metallic surface. The origin of nanodots is explained as follows. Close to the microplasma nozzle, the concentration of oxidizing species and/or the temperature being high enough, a silica thin film is obtained, leading to ceramic-metallic oxide interface that leads to a Volmer-Weber growth mode and to the synthesis of 3D structures over long treatment times. Far from the nozzle, the reactivity decreasing, thin films get a plasma-polymer like behaviour which leads to a Franck-Van der Merwe growth mode and films with a higher density. Other nanostructures, made of hexagonal cells, are observed but remain unexplained.

Equipe: Centre de Compétences : ERMIONE informatique et calcul

Total:
7
Exporter au format:
BibTeX, XML