Structural analyses and properties of complex sulphides with very low thermal conductivities in the Cr-Sn-S System

Florentine Guiot

Institut des Sciences Chimiques de Rennes, UMR6226 CNRS, Rennes, France

The design and optimization of thermoelectric (TE) materials rely on the intricate balance between thermopower (S), electrical resistivity (ρ) and thermal conductivity (κ). Perfecting such a balance is the key to reach high TE performances - determined by the dimensionless figure of merit $ZT = S^2T/\rho\kappa$ - necessary to improve energy recovery systems and thermoelectric cooling devices [1]. Among the most promising TE materials at medium temperature, complex copper-based sulphides are of double interests as they are usually made of eco-friendly and low-cost elements [2] and exhibit intrinsically low thermal conductivity [3]. However, the use of copper-based sulphides in TE devices is limited by the performances of the *n*-type materials compared to those of the *p*-types [4]. Consequently, it appears now necessary to develop more performant n-type sulphide materials. In this context, my Ph.D. work consists to synthesize and characterize the structural and physical properties of potential new n-type TE sulphide materials.

In this seminar, I will present our recent results obtained from several complementary techniques (X-ray and electron diffraction, scanning and transmission electron microscopies, magnetic measurements, spectroscopies, transport measurements) on two phases with complex crystal structure, leading to very low thermal conductivity, in the Cr-Sn-S ternary system: n-type Cr₂Sn₃S₇ [5] and p-type Cr₂SnS₄. With the help of theoretical calculations, I will discuss also on the relationships between their properties and crystal and electronic structures.

Keywords: Crystal structure, X-ray diffraction, Electron microscopy and diffraction, Mössbauer spectroscopy, Thermoelectricity, Magnetism, Theoretical calculations

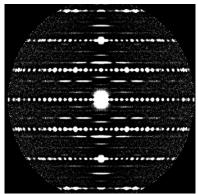


Fig.1: Reconstructed reciprocal space from electron diffraction pattern ([101] zone axis) of Cr₂SnS₄ revealing its complex crystal structure highlighted by diffuse scattering.

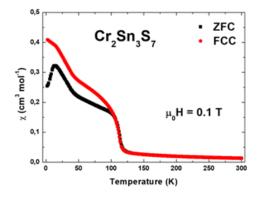


Fig.2: Magnetic measurement of the $Cr_2Sn_3S_7$ sample revealing its magnetic ordering at low temperature.

- [1] Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A. J. Phys.: Condens. Matter 2016, 28 (1), 013001.
- [2] Caballero-Calero, O.; Ares, J. R.; Martín-González, M. Adv. Sustainable Syst. 2021, 2100095.
- [3] Powell, A. V. Journal of Applied Physics 2019, 126 (10), 100901.
- [4] Guélou, G.; Lemoine, P.; Raveau, B.; Guilmeau, E. J. Mater. Chem. C 2021, 9 (3), 773–795.
- [5] Guiot, F.; Prestipino, C.; Guilmeau, E.; Fujii, S.; Dorcet, V.; Acharyya, P.; Malaman, B.; Schweitzer T.; Elkaïm E.; Yoshiya, M.; Lemoine, P. To be submitted