Articles: | |
---|---|
• |
Scientific Reports,
4
2014
Equipe: Département P2M : Nanomagnétisme et Electronique de Spin |
• |
Inorganic Chemistry,
53 (1):147-159
2014
Equipe: Département SI2M : Microstructures et Contraintes |
• |
ACS Applied Materials and Interfaces,
6:13707-13715
2014
DOI: 10.1021/am503160w
Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS |
• |
Nature Communications,
5
2014
Equipe: Département P2M : Nanomagnétisme et Electronique de Spin |
• |
Journal of Applied Physics,
115(17)
2014
Equipe: Département P2M : Nanomagnétisme et Electronique de Spin |
• |
Images in Plasma Science,
99:1
2014
Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS |
• |
Thin Solid Films,
552:164-169
2014
Equipe: Département P2M : Nanomagnétisme et Electronique de Spin |
• |
Surface and Coatings Technology,
2014
Mots clefs: High Current Pulsed Electron Beam Treatment (HCPEB) Surface hardening Corrosion Phase selection Phase transformation Martensitic steel Resume: Abstract The surface of the AISI 420 martensitic stainless steel was subjected to High Current Pulsed Electron Beam (HCPEB) treatment. The microstructure in the melted layer consisted of a three phase mixture: (i) fine ?-Fe grains formed via epitaxial growth from the substrate, (ii) larger ?–grains nucleated from the top surface of the melt and (iii) some needles-like variants issued from the solid state martenitic transformation. Despite this complex multi-phase microstructure, the corrosion performance, tested in a sulfuric acid solution, was significantly enhanced by the HCPEB treatment. The increase in corrosion potential and delayed pitting are essentially attributed to an increase in Cr content, rising from 13.3 wt. % in the bulk to about 14 wt. % at the surface, together with a very limited amount of surface craters. This low density of craters did not give rise to significant deep hardening in the sub-surface but the top surface melted layer hardness was increased by more than 50% because of the triggering of the martensitic transformation. Equipe: Département CP2S : Chimie et électrochimie des matériaux |
• |
Surface and Coatings Technology,
259:737-745
2014
Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS |
• |
Plasma Processes and Polymers,
11:551-558
2014
Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS |