linkedintwitter
Annuaire  |  Flux RSS  |  Espace presse  |  Wiki IJL  |  Webmail  |  Videos  |    Photos   Articles scientifiques  Articles scientifiques 

Publications: Articles

Annees:  
Toutes :: 2003, ... , 2012, 2013, 2014, 2015
Auteurs:  
Tous :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
Tous :: R. Boulesteix, ... , Ricard, Richoux, Rida, ... , Römer 
Preferences: 
References par page: Mots clefs Voir les resumes
References

Articles:

Djaziri, S., Renault, P.-O., Le Bourhis, E., Goudeau, Ph., Faurie, D., Geandier, G., Mocuta, C. and Thiaudière, D.
Journal of Applied Physics, 116:093504
2014

Equipe: Département SI2M : Microstructures et Contraintes

Derkaoui, N., Rond, C., Gries, T., Henrion, G. and Gicquel, A.
Journal of Physics D: Applied Physics, 47:205201
2014

Resume: The electron temperature and electron density are measured in a microwave (MW) plasma-assisted chemical vapour diamond deposition reactor for different experimental conditions by varying the substrate temperature, methane content and MW power density. Optical emission spectroscopy (OES) and MW interferometry are used to probe the discharge generated in a stainless steel resonant cavity excited at a frequency of 2.45 GHz. Changing the substrate temperature from 630 to 900 ?C does not show any significant influence on the electron temperature or on the electron density. Increasing the methane content from 0 to 10% does not lead to any modification of the electron temperature or density. However between 10% and 20% CH, a decrease of the electron density is observed which may be attributed to soot particle formation. The electron density increases in the range of (1.2-10) x 1011 cm-3 from moderate power density conditions (50 hPa/1000 W) to high power density conditions (250 hPa/3500 W). OES measurements show that the electron temperature exhibits a flat axial profile in the plasma bulk and ranges from 14 000K at (25 hPa/600 W) to 10 500K at (400 hPa/3000 W).

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Margueron, S., Ropers, S., Genty, F., Bartasyte, A. and Belmonte, T.
Materials Chemistry and Physics, 147:623-628
2014

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Baringhaus, Jens, Ruan, Ming, Edler, Frederik, Tejeda, Antonio, Sicot, Muriel, Taleb-Ibrahimi, Amina, Li, An-Ping, Jiang, Zhigang, Conrad, Edward H., Berger, Claire, Tegenkamp, Christoph and de Heer, Walt A.
NATURE, 506(7488):349-354
2014
ISSN: 0028-0836

Equipe: Département P2M : Surfaces et Spectroscopies

Geandier, G., Faurie, D., Renault, P.-O., Thiaudière, D. and Le Bourhis, E.
Journal of Applied Crystallography, 47:181-187
2014

Equipe: Département SI2M : Microstructures et Contraintes

Veys-Renaux, D., ROCCA, E., Martin, J. and Henrion, G.
Electrochimica Acta, 124:30-45
2014

Resume: In the framework of the new ecological regulations, micro-arc oxidation (MAO) appears as an alternativeto usual processes in the field of corrosion protection of Mg alloys. In this work, the initial stagesof anodic layer growth in KOH-based electrolytes are studied up to and beyond the initiation of themicro-arc regime.The properties of the first anodized film preceding the occurrence of the dielectric breakdown (corre-sponding to the start of the micro-arc regime) are mainly determined by the incorporation of additives(fluorides or silicates) in the film, as shown by in situ electrochemical measurements. Scanning electronmicroscopy (SEM), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy reveal boththe change of morphology and chemical state of silicate and fluoride in the anodized layer before andafter the micro-arc regime. In terms of electrochemical behaviour, investigated by stationary methodsand electrochemical impedance spectroscopy (EIS) in reference corrosive water, the anodic film grownin the silicate medium provides the best corrosion resistance thanks to a thick layer containing Mg2SiO4,whose degradation products seal the porosities of the coating.

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Chambrier, M-H, Le Bail, A., Giovanelli, F., Redjaïmia, A, Florian, P., Massiot, D., Suard, E. and Goutenoire, F.
Inorganic Chemistry, 53 (1):147-159
2014

Equipe: Département SI2M : Microstructures et Contraintes

Faurie, D., Renault, P.-O., Le Bourhis, E., Geandier, G., Goudeau, P. and Thiaudière, D.
Applied Surface Science, 306:70--74
2014
ISSN: 0169-4332

Equipe: Département SI2M : Microstructures et Contraintes

Vernier, N., Adam, J.-P., Eimer, S., Agnus, G., Devolder, T., Hauet, T., Ocker, B., Garcia, F. and Ravelosona, D.
Applied Physics Letters, 104(12)
2014

Equipe: Département P2M : Nanomagnétisme et Electronique de Spin

Hamdan, A., Marinov, I., Rousseau, A. and Belmonte, T.
Images in Plasma Science, 99:1
2014

Equipe: Département CP2S : Expériences et Simulations des Plasmas Réactifs - Interaction plasma-surface et Traitement des Surfaces ESPRITS

Page:  
Precedente | 1, 2 | Suivante
Cette annee / Total:
20 / 223
Exporter au format:
BibTeX, XML