linkedintwitter
Annuaire  |  Flux RSS  |  Espace presse  |  Wiki IJL  |  Webmail  |  Videos  |    Photos   Articles scientifiques  Articles scientifiques 

Publications: Articles

Annees:  
Toutes :: 2007, ... , 2009, 2011, 2014, ... , 2016
Auteurs:  
Tous :: A, B, C, D, E, F, G, H, J, K, L, M, N, O, P, R, S, T, V, W, Z 
Preferences: 
References par page: Mots clefs Voir les resumes
References

2016

Articles:

Turgis, R., Arrachart, G., Dubois, V., Dourdain, S., Virieux, D., Michel, S., Legeai, S., Lejeune, M., Draye, M. and Pellet-Rostaing, S.
Dalton Transactions, 45(Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved.):1259-1268
2016

Resume: The extn. of rare earth elements (REEs) from nitric acid soln. with a triphosphine trioxide (TPO) is presented. Performances of such a ligand in ionic liqs. vs. a classical solvent (benzyl ether) are compared. TPO seems to be 10 to 100 times more efficient when it is dissolved in ionic media whatever the concn. of nitric acid involved. Mechanistic investigations reveal that cation exchange classically obsd. in ionic liqs. is not consistent with the exptl. data. Moreover, clear differences in the TPO/Ln complexes between classical and ionic media are highlighted. A stable complex of 1 lanthanide for 3 TPO is formed in an ionic liq. whereas a complex of 1 lanthanide for 6 to 9 TPO is formed in benzyl ether. Back extn. is also studied and good recovery of REEs could be obtained. The TPO/ionic liq. system shows remarkable performances i.e. efficiency and selectivity towards lanthanides in a simulated leaching soln. of a Nd/Fe/B/Dy magnet. [on SciFinder(R)]

Equipe: Département CP2S : Chimie et électrochimie des matériaux

2015

Articles:

Hazotte, Claire, Meux, Eric, Leclerc, Nathalie and Lapicque, Francois
Chemical Engineering and Processing: Process Intensification, 96:83-93
2015

Mots clefs: Electroassisted leaching Electrodeposition Ni–Cd batteries Solid waste Transport rates

Resume: Abstract Combined leaching of solid wastes to electrodeposition can be an attractive technique for their optimal beneficiation. In most investigations in the area, results are given in terms of energy consumption and selectivity, without thorough analysis of the rates of the various processes involved. The present investigation deals with the significance of transport and transfer phenomena involved in relation to reaction processes, in a cell combining electroassisted leaching to electrodeposition in view to designing treatment processes of manufactured wares after their end of life. The case of the so-called black mass of used Ni–Cd batteries has been considered here, for the separate productions of nickel salts and metal cadmium. First, leaching of the various hydroxides contained in the black mass has been studied either upon addition of acid or by electrochemical generation of H+ at the anode. Moreover, transport of the metal cations produced from the anode compartment to the cathode through the cloth acting as the separator has been investigated through a simple description of transport phenomena. Comparison and discussion of the various transport or reaction rates could show that ion transport through the porous separator could represent the rate-determining step.

Equipe: Département CP2S : Chimie et électrochimie des matériaux

Hazotte, Claire, Leclerc, Nathalie, Diliberto, Sébastien, Meux, Eric and Lapicque, Francois
Environmental Technology, 36(6):796-805
2015

Resume: The aim of this paper is the characterization of spent NiCd batteries and the characterization of an industrial Black Mass obtained after crushing spent NiCd batteries and physical separation in a treatment plant. The characterization was first performed with five cylindrical NiCd batteries which were manually dismantled. Their characterization includes mass balance of the components, active powders elemental analysis and phase identification by X-ray powder diffraction. Chemical speciation of the two metals was also investigated. For cadmium, speciation was previously developed on solid synthetic samples. In a spent battery, the active powders correspond to about 43% of the battery weight. The other components are the separator and polymeric pieces (5%), the support plates (25%) and the carbon steel external case (27%). The sequential procedure shows that the nickel in the positive powders from the dismantled Ni?Cd batteries is distributed between Ni0 (39.7%), Ni(OH)2 (58.5%) and NiOOH (1.8%). Cadmium in the negative powder is about 99.9% as the Cd(OH)2 form with 0.1% of metal cadmium. In the industrial Black Mass, the distribution of cadmium is the same, whereas the distribution of nickel is Ni0 (46.9%), Ni(OH)2 (43.2%) and NiOOH (9.9%). This material contains also 1.8% cobalt and approx. 1% iron.

Equipe: Département CP2S : Chimie et électrochimie des matériaux

2014

Articles:

Szymczak, Jonathan, Legeai, Sophie, Michel, Stéphanie, Diliberto, Sébastien, Stein, Nicolas and Boulanger, Clotilde
Electrochimica Acta, 137(0):586-594
2014

Mots clefs: Bismuth telluride Ionic liquid Electrodeposition Thermoelectricity

Resume: Abstract In this paper, we report the electrodeposition of stoichiometric Bi2Te3 compound using an ionic liquid binary mixture: 1-ethyl-1-octyl-piperidinium bis(trifluoromethylsulfonyl)imide: 1-ethyl-1-octyl-piperidinium bromide (EOPipTFSI:EOPipBr 95:5 (mol%)). The use of this mixture allows to reach a higher solubility of Bi(III) and Te(IV) precursors compared to pure EOPipTFSI ionic liquid in which Te(IV) salts are not soluble. Moreover, this electrolyte presents an extended cathodic stability, allowing the study of electrochemical processes that occur at high cathodic potential values. A detailed voltammetric study of electrochemical systems was performed for electrolytes containing different [Bi(III)]/[Te(IV)] ratio, allowing the attribution of cathodic signals to electrochemical processes. Experimental conditions leading to the deposition of stoichiometric Bi2Te3 were then determined by varying deposition potential and electrolyte composition, using potentiostatic experiments followed by XRD and SEM-EDX analysis. By varying the concentration of precursors in the electrolyte, mirror-like coatings, adherent and homogeneous, were obtained. Electroplated Bi2Te3 presents n-type conductivity with a Seebeck coefficient equal to ?70 ?V K?1 and an electrical resistivity of 133 ?? m.

Equipe: Département CP2S : Chimie et électrochimie des matériaux

Samih, Y., Marcos, G., Stein, N., Allain, N., Fleury, E., Dong, C. and Grosdidier, T.
Surface and Coatings Technology,
2014

Mots clefs: High Current Pulsed Electron Beam Treatment (HCPEB) Surface hardening Corrosion Phase selection Phase transformation Martensitic steel

Resume: Abstract The surface of the AISI 420 martensitic stainless steel was subjected to High Current Pulsed Electron Beam (HCPEB) treatment. The microstructure in the melted layer consisted of a three phase mixture: (i) fine ?-Fe grains formed via epitaxial growth from the substrate, (ii) larger ?–grains nucleated from the top surface of the melt and (iii) some needles-like variants issued from the solid state martenitic transformation. Despite this complex multi-phase microstructure, the corrosion performance, tested in a sulfuric acid solution, was significantly enhanced by the HCPEB treatment. The increase in corrosion potential and delayed pitting are essentially attributed to an increase in Cr content, rising from 13.3 wt. % in the bulk to about 14 wt. % at the surface, together with a very limited amount of surface craters. This low density of craters did not give rise to significant deep hardening in the sub-surface but the top surface melted layer hardness was increased by more than 50% because of the triggering of the martensitic transformation.

Equipe: Département CP2S : Chimie et électrochimie des matériaux

Maas, M., Diliberto, S., de Vaulx, C., Azzouz, K. and Boulanger, C.
Journal Electronic Materials, 43(10):3857-3862
2014

Mots clefs: Bismuth telluride thick films soluble anode thermoelectric

Equipe: Département CP2S : Chimie et électrochimie des matériaux

2011

Articles:

Ruiz, V., Meux, E., Diliberto, S. and Schneiders, M.
Industrial & Engineering Chemistry Research, 50(9):5295-5306
2011

Equipe: Département CP2S : Chimie et électrochimie des matériaux

Ruiz, V., Meux, E., Schneider, M. and Georgeaudl, V.
Industrial & Engineering Chemistry Research, 50(9):5307-5315
2011

Equipe: Département CP2S : Chimie et électrochimie des matériaux

2009

Articles:

Rup, S., Zimmermann, F., Meux, E., Schneider, M., Sindt, M. and Oget, N.
Ultrasonics Sonochemistry, 16(2):266-272
2009

Equipe: Département CP2S : Chimie et électrochimie des matériaux

2008

Articles:

Dazy, M., Beraud, E., Cotelle, S., Meux, E., Masfaraud, J. F. and Ferard, J. F.
Chemosphere, 73(3):281-290
2008

Equipe: Département CP2S : Chimie et électrochimie des matériaux

Page:  
Precedente | 1, 2 | Suivante
Total:
15
Exporter au format:
BibTeX, XML